Modelling the cost-effectiveness of osteoporosis medications

Economic evaluation

« Comparative analysis between two or more health technologies in terms of costs and effects»

Full economic evaluation

Type of study	Costs	Outcomes	
Cost-minimization	Euro's	Identical in all relevant aspects	
Cost-effectiveness	Euro's	Natural unit (Clinical endpoints such events or life years)	as fracture
Cost-utility	Euro's	Quality-adjusted life years	
Cost-benefit	Euro's	Euro's	

Incremental cost-effectiveness ratio

ICER =
$$(C_A - C_B) / (E_A - E_B) = \Delta C / \Delta E$$

= The additional cost per extra unit of effect from the comparator treatment

Examples: additional cost per fracture prevented, additional cost per QALY gained etc.

The lower the ICER, the more cost-effective the intervention

Intervention adopted if ICER < λ (= willingness to pay per effectiveness unit)

Results of an economic evaluation

Methods of economic evaluation

Trial-based economic evaluation

- Costs and outcomes alongside a RCT
- <u>Cons</u>: truncated time horizon, limited comparators

Decision-analytic modeling

- Mathematical models to synthetize all available information regarding health care process
- Pros: extending results from a single trial (lifetime); combining multiple sources of evidence to answer policy questions; extrapolation to final outcome (QALYs); modeling uncertainties in the knowledge base

Zethraeus, N., et al. Osteoporos Int, 2007. 18(1): p. 9-23.

Health states

- Patients progress through states over time
- At each cycle (length and number), transition probabilities
- Costs and health outcomes associated with time spent in states and/or transitions

Markov model

- Markov trace \succ
- Expected values for a cohort of patients (= proportion of patients in each state, at each cycle multiplied by the corresponding costs/outcomes)

No Treatm	nent						COSTS	QALYS	
	No Fx	Hip	Post Hip	CV	Post CV	Death			
0	1000	0	0	0	0	0			
1	992	3	0	4	0	1	10000	975	
2	981	5	3	5	3	3	20000	953	
3	965	7	7	7	8	6	25000	925	
Treatment	t						SUM	SUM]
	No Fx	Hip	Post Hip	CV	Post CV	Death			
0	1000	0	0	0	0	0			
1	992	2	0	3	0	1			
2	988	3	2	3	2	2			
3	979	4	5	4	4	4			

Markov model

Continuous risk over time
Recurrence of events

Markov assumption of 'no memory': future transitions do not depend on previous ones

Bypassing this assumption of no memory:

- additional states (post-fracture states)
- microsimulation

Markov model

Cohort 'simulation'

Based on applying the transition matrix directly ۲

Monte Carlo simulation

- A sample of individual patients is simulated in the Markov, one by one, and their progression is recorded
- Expected values are obtained by averaging ۲

Cohort vs. Monte Carlo

Monte Carlo allows relaxing some of the assumptions of cohort Models (eg. relax the assumption of lack of memory of Markov models)

Markov microsimulation

Questions to develop a CE model in osteoporosis

Model structure

model type; time horizon; health states; transitions and cycle length

- Transitions probabilities
- Treatment strategies
- Costs
- Outcomes
- Treatment characteristics
- Simulation and sensitivity analyses

ernational Osteoporosis undation

Transitions probabilities

- Baseline fracture risk (fracture incidence)
- Target population: BMD; presence or absence of fracture; FRAX
- Effect of a fracture
- Presence or absence of therapy

Fracture effects on mortality

Treatment strategies

- Comparator
- Indirect comparison?
- Sequential treatment

Costs

- Perspective: societal or healthcare (guidelines)
- Fracture costs
 - Short term costs (hospitalization)
 - Extra costs in the year following fractures
 - Long-term costs (admission to nursing home)
- Treatment costs

Outcomes

- QALY = quantity of life X Utility
- Effects of fracture on utility (e.g. ICUROS study)
 - Short term
 - Long term
 - Several fractures

Svedbom et al. Osteoporosis International 2018 Epub Ahead of Print Table 2 EQ-5D HSUV, accumulated QoL loss, and QoL multiplier, for all time points by fracture type

	Hip fracture	Hip fracture		•	Distal forearm fracture		
	Mean (SD)	95% CI	Mean (SD)	95% CI	Mean (SD)	95% CI	
EQ-5D HSUV							
Before fracture	0.77 (0.27)	0.75, 0.78	0.83 (0.23)	0.81, 0.85	0.89 (0.19)	0.88, 0.90	
At enrollment	-0.11 (0.37)	-0.14, -0.10	0.17 (0.43)	0.13, 0.20	0.41 (0.34)	0.439, 0.43	
4 months post	0.49 (0.38)	0.47, 0.51	0.60 (0.33)	0.57, 0.63	0.77 (0.25)	0.76, 0.79	
12 months post	0.59 (0.37)	0.57, 0.61	0.70 (0.29)	0.67, 0.72	0.85 (0.21)	0.84, 0.86	
18 months post	0.66 (0.34)	0.64, 0.68	0.70 (0.34)	0.67, 0.73	0.88 (0.20)	0.87, 0.89	
HSUV decrement**							
At enrollment	-0.89 (0.40)	-0.91, -0.87	-0.67 (0.45)	-0.70, -0.63	-0.48 (0.34)	-0.50, -0.46	
4 months post	-0.28 (0.40)	-0.30, -0.26	-0.23 (0.34)	-0.26, -0.20	-0.12 (0.26)	-0.13, -0.10	
12 months post	-0.17 (0.38)	-0.19, -0.15	-0.13 (0.29)	-0.16, -0.11	-0.04 (0.22)	-0.05, -0.03	
18 months post	-0.11 (0.37)	-0.12, -0.09	-0.13 (0.32)	-0.15, -0.10	-0.01 (0.22)	-0.02, 0.00	
Accumulated QoL loss							
0-6 months	0.24 (0.17)	0.23, 0.25	0.19 (0.16)	0.17, 0.20	0.12 (0.12)	0.11, 0.12	
7-12 months	0.11 (0.18)	0.10, 0.12	0.08 (0.14)	0.07, 0.10	0.03 (0.11)	0.03, 0.04	
0-12 months	0.34 (0.34)	0.33, 0.36	0.27 (0.28)	0.24, 0.29	0.15 (0.22)	0.14, 0.16	
13-18 months	0.07 (0.17)	0.06, 0.08	0.07 (0.14)	0.05, 0.08	0.01 (0.10)	0.01, 0.02	
18-24 months	0.05 (0.18)	0.04, 0.06	0.06 (0.16)	0.05, 0.08	0.01 (0.11)	0.00, 0.01	
12-24 months	0.12 (0.35)	0.10, 0.14	0.13 (0.30)	0.10, 0.15	0.02 (0.21)	0.01, 0.03	
Subsequent years	0.11 (0.37)	0.09, 0.12	0.13 (0.32)	0.10, 0.15	0.01 (0.22)	0.00, 0.02	
QoL multiplier*							
0-6 m	0.38	0.36, 0.40	0.56	0.53, 0.59	0.74	0.72, 0.75	
7–12 m	0.72	0.70, 0.74	0.80	0.77, 0.82	0.92	0.91, 0.94	
0-12 m	0.55	0.53, 0.57	0.68	0.65, 0.70	0.83	0.82, 0.84	
13-18 m	0.82	0.80, 0.84	0.84	0.82, 0.87	0.97	0.96, 0.99	
18-24 months	0.86	0.84, 0.89	0.85	0.81, 0.88	0.99	0.97, 1.00	
12-24 months	0.84	0.82, 0.86	0.84	0.81, 0.88	0.98	0.97, 0.99	
Subsequent years	0.86	0.84, 0.89	0.85	0.82, 0.87	0.99	0.97, 1.00	

International Osteoporosis Foundation

Treatment - *efficacy*

- Treatment duration
- Anti-fracture efficacy during treatment and after discontinuation (offset time)
- Adherence effect

Note: Each treatment line is color-coded to match the X-axis labels at the top of the chart; vertical black lines indicate transitions to the next stage in sequence/efficacy. Line placement is not exact. Fx: fracture, RR: relative risk, Tx: treatment

Treatment – costs

- Drug cost
- Monitoring cost (DXA, GP visit)
- Adverse events

Simulation and calculation

- Discounting (guideline)
- Incremental costs and effects
- ➢ ICER

	Totals			Incremental			ICERs		
	Cost	LYs	QALYs	Cost	LYs	QALYs	Cost per LY saved	Cost per QALY gained	
Generic alendronate	\$31,456	7.9007	5.9866	_	_	_	Ref.	Ref.	
Denosumab	\$32,334	7.9339	6.0386	\$878	0.0333	0.0520	\$26,389	\$16,888	
Zoledronate	\$35,138	7.9132	6.0037	\$2,804	-0.0208	-0.0350	Dominated	Dominated	
Risedronate	\$35,232	7.8941	5.9760	\$2,899	-0.0399	-0.0626	Dominated	Dominated	
Ibandronate	\$35,550	7.8867	5.9663	\$3,216	-0.0472	-0.0723	Dominated	Dominated	
Teriparatide	\$48,828	7.9308	6.0279	\$16,495	-0.0031	-0.0107	Dominated	Dominated	

TABLE 5: Cost-effectiveness results: base-case.

Numbers may not add up due to rounding.

Silverman S et al. J Osteoporos, 2015. 2015: p. 627-631

Uncertainty

- Structural uncertainty (assumptions, methods)
- Parameters uncertainty (e.g. treatment effect)
- Heterogeneity (sex, age, subgroups)
- Need to be addressed
- \Rightarrow Sensitivity analyses (univariate and probabilistic)

Univariate sensitivity analyses

Table 3 One-way sensitivity analyses on fracture risk and treatment cost on the cost in \in per QALY gained of vitamin D and calcium supplementation compared with no treatment for women and men aged 60–80 years with a BMD *T*-score ≤ -2.5 (95% CI are given in parentheses)

	60 years	70 years	80 years
Women			
Base-case analysis	40 578 (19 600; 61 556)	7912 (6216; 9608)	Cost-saving
Fracture risk -30%	50 582 (-35 280; 136 444)	24 897 (17 827; 31 968)	Cost-saving
Fracture risk +45%	20 017 (15 850; 24 184)	Cost-saving	Cost-saving
High treatment cost	52 394 (11 927; 92 860)	23 444 (20 431; 26 457)	Cost-saving
Men			-
Base-case analysis	23 477 (19 277; 27 678)	10 250 (8910; 11 589)	Cost-saving
Fracture risk –45%	53 429 (-186 891; 293 748)	39 034 (23 778; 54 290)	15 352 (12 792; 17 913)
Fracture risk +45%	9355 (7250; 11 460)	Cost-saving	Cost-saving
High treatment cost	33 755 (-199; 67 708)	23 092 (18 600; 27 584)	3872 (2812; 4933)

Note: BMD, bone mineral density; CI, confidence interval; QALY, quality-adjusted life years.

Hiligsmann et al. Eur J Public Health 2015 25 (1), 20–25

Probabilistic sensitivity analyses

FIGURE 4: Base-case probabilistic sensitivity analysis. Note: CE curves for risedronate, ibandronate, and teriparatide do not appear in the figure, as they are not considered cost-effective at any threshold in this analysis.

Silverman S et al. J Osteoporos, 2015. 2015: p. 627-631

